"On the Dissipation of the Electrical Energy of the Hertz Resonator"

Twenty First Century Books

Home | Newsletter | Tesla FAQ | Tesla Writings | Tesla Patents | Tesla On AC | Glossary | Links Bookstore | Contact Us | Search | Reference Section | Wholesale Distribution | Tesla Books | Site Map

ON THE DISSIPATION OF THE ELECTRICAL ENERGY OF THE HERTZ RESONATOR

by Nikola Tesla

Previous | Next | TOC

The Electrical Engineer - December 21, 1892

Anyone who, like myself, has had the pleasure of witnessing the beautiful demonstrations with vibrating diaphragms which Prof. Bjerknes, exhibited in person at the Paris Exposition in 1880, must have admired his ability and painstaking care to such a degree, as to have an almost implicit faith in the correctness of observations made by him. His experiments "On the Dissipation of the Electrical Energy of the Hertz Resonator," which are described in the issue of Dec. 14, of THE ELECTRICAL ENGINEER, are prepared in the same ingenious and skillful manner, and the conclusions drawn from them are all the more interesting as they agree with the theories put forth by the most advanced thinkers. There can not be the slightest doubt as to the truth of these conclusions, yet the statements which follow may serve to explain in part the results arrived at in a different manner; and with this object in view I venture to call attention to a condition with which, in investigations such as those of Prof. Bjerknes, the experimenter is confronted.

The apparatus, oscillator and resonator, being immersed in air, or other discontinuous medium, there occurs—as I have pointed out in the description of my recent experiments before the English and French scientific societies-dissipation of energy by what I think might be appropriately called *electric sound waves* or *sound-waves of electrified air*. In Prof. Bjerknes's experiments principally this dissipation in the resonator need be considered, though the sound-waves-if this term be permitted—which emanate from the surfaces at the oscillator may considerably affect the observations made at some distance from the latter. Owing to this dissipation the period of vibration of an air-condenser can not be accurately determined, and I have already drawn attention to this important fact. These waves are propagated at right angles from the charged surfaces when their charges are alternated, and dissipation occurs, even if the surfaces are covered with thick and excellent insulation. Assuming that the "charge" imparted to a molecule or atom either by direct contact or inductively is proportionate to the electric density of the surface, the dissipation should be proportionate to the square of the density and to the number of waves per second. The above assumption, it should be stated, does not agree with some observations from which it appears that an atom can not take but a certain maximum charge; hence, the charge imparted may be practically independent of the density of the surface, but this is immaterial for the present consideration. This and other points will be decided when accurate quantitative determinations, which are as yet wanting, shall be trade. At present it appears certain from experiments with, high-frequency currents, that this dissipation of energy from a wire, for instance, is not very far from being proportionate to the frequency of the alternations, and increases very rapidly when the diameter of the wire is made exceedingly small. On the latter point the recently published results of Prof. Ayrton and H. Kilgour on "The Thermal Emissivity of Thin Wires in Air" throw a curious light. Exceedingly thin wires are capable of dissipating a comparatively very great amount of energy by the agitation of the surrounding air, when they are connected to a source of rapidly alternating potential. So in the experiment cited, a thin hot wire is found to be capable of emitting an extraordinarily great amount of heat, especially at elevated temperatures. In the case of a hot wire it must of course be assumed that the increased emissivity is due to the more rapid convection and not, to any, appreciable degree, to an increased radiation. Were the latter demonstrated, it would show that a wire, made hot by the application of heat in ordinary ways, behaves in some respects like one, the charge of which is rapidly alternated, the dissipation of energy per unit of surface kept at a certain temperature depending on the curvature of the surface. I do not recall any record of experiments intended to demonstrate this, yet this effect, though probably very small, should certainly be, looked for.

A number of observations showing the peculiarity, of very thin wires were made in the course of my experiments. I noted, for instance, that in the well-known Crookes instrument the mica vanes are repelled with comparatively greater force when the incandescent platinum wire is exceedingly thin. This observation enabled me to produce the spin of such vanes mounted in a vacuum tube when the latter was placed in an alternating electrostatic field. This however does not prove anything in regard to radiation, as in a highly exhausted vessel tile phenomena are principally due to molecular bombardment or convection.

When I first undertook to produce the incandescence of a wire enclosed in a bulb, by connecting it to only *one* of the terminals of a high tension transformer, I could not succeed for a long time. On one occasion I had mounted in a bulb a thin platinum wire, but my apparatus was not adequate to produce the incandescence. I made other bulbs, reducing the length of the wire to a small fraction; still I did not succeed. It then occurred to me that it would be desirable to have the surface of the wire as large as possible, yet the bulk small, and I provided a bulb with an exceedingly thin wire of a bulk about equal to that of the short but much thicker wire. On turning the current on the bulb the wire was instantly fused. A series of subsequent experiments showed that when the diameter of the wire was exceedingly small, considerably more energy would be dissipated per unit surface at all degrees of exhaustion than was to be expected, even on the assumption that the energy given off was in proportion to the square of the electric density. There is likewise evidence which, though not possessing the certainty of an accurate quantitative determination, is nevertheless

reliable because it is the result of a great many observations, namely, that with the increase of the density the dissipation is more rapid for thin than for thick wires.

The effects noted in exhausted vessels with high-frequency currents are merely diminished in degree when the air is at ordinary pressure, but heating and dissipation occurs, as I have demonstrated, under the ordinary atmospheric conditions. Two very thin wires attached to the terminals of a high-frequency coil are capable of giving off an appreciable amount of energy. When the density is very great, the temperature of the wires may be perceptibly raised, and in such case probably the greater portion of the energy which is dissipated *owing to the presence of a discontinuous medium* is transformed into heat at the surface or in close proximity to the wires. Such heating could not occur in a medium possessing either of the two qualities, namely, perfect incompressibility or perfect elasticity. In fluid insulators, such as oils, though they are far from being perfectly incompressible or elastic to electric displacement, the heating is much smaller because of the continuity of the fluid.

When the electric density of the wire surfaces is small, there is no appreciable local heating, nevertheless energy is dissipated in air, by waves, which differ from ordinary sound-waves only because the air is electrified. These waves are especially conspicuous when the discharges of a powerful battery are directed through a short and thick metal bar, the number of discharges per second being very small. The experimenter may feel the impact of the air at distances of six feet or more from the bar, especially if be takes the precaution to sprinkle the face or hands with ether. These waves cannot be entirely stopped by the interposition of an insulated metal plate.

Most of the striking phenomena of mechanical displacement, sound, heat and light which have been observed, imply the presence of a medium of a gaseous structure that is one consisting of independent carriers capable of free motion.

When a glass plate is placed near a condenser the charge of which is alternated, the plate emits a sound. This sound is due to the rhythmical impact of the air against the plate. I have also found that the ringing of a condenser, first noted by Sir William Thomson, is due to the presence of the air between or near the charged surfaces.

When a disruptive discharge coil is immersed in oil contained in a tank, it is observed that the surface of the oil is agitated. This may be thought to be duo to the displacements produced in the oil by the changing stresses, but such is not the case. It is the air above the oil which is agitated and causes the motion of the latter; the oil itself would remain at rest. The displacements produced in it by changing electrostatic stresses are insignificant; to such stresses it may be said to be compressible to but a very small degree. The action of the air is shown in a curious manner for if a pointed metal bar is taken in the hand and held with the point close to the oil, a hole two inches deep is formed in the oil by the molecules of the air, which are violently projected from the point.

The preceding statements may have a general bearing upon investigations in which currents of high frequency and potential are made use of, but they also have a more direct bearing upon the experiments of Prof. Bjerknes which are here considered, namely, the "skin effect," is increased by the action of the air. Imagine a wire immersed in a medium, the conductivity of which would be some function of the frequency and potential difference but such, that the conductivity increases when either or bout of these elements are increased. In such a medium, the higher the frequency and potential difference, the greater wilt be the current which will find its way through the surrounding medium, and the smaller the part which will pass through the central portion of the wire: In the case of a wire immersed in air and traversed by a high-frequency current, the facility with which the energy is dissipated may be considered as the equivalent of the conductivity; and the analogy would be quite complete, were it not that besides the air another medium is present, the total dissipation being merely modified by the presence of the air to an extent as yet not ascertained. Nevertheless, I have sufficient evidence to draw the conclusion, that the results obtained by Prof. Bjerknes are affected by the presence of air in the following manner: 1. The dissipation of energy is more rapid when the resonator is immersed in air than it would be in a practically continuous medium, for instance, oil. 2. The dissipation owing to the presence of air renders the difference between magnetic and non-magnetic metals more striking. The first conclusion follows directly from the preceding remarks; the second follows front the two facts that the resonator receives always the same amount of energy, independent of the nature of the metal, and that the magnetism of the metal increases the impedance of the circuit. A resonator of magnetic metal behaves virtually as though its circuit were longer. There is a greater potential difference set up per unit of length; although this rosy not show itself in the deflection of the electrometer owing to the lateral dissipation. The effect of the increased impedance is strikingly illustrated in the two experiments of Prof. Bjerknes when copper is deposited upon an iron wire, and next iron upon a copper wire. Considerable thickness of copper deposit was required in the former experiment, but very little thickness of iron in the latter, as should be expected.

Taking the above views, I believe, that in the experiments of Prof. Bjerknes which lead him to undoubtedly correct conclusions, the air is a factor fully as important, if not more so, than the resistance of the metals.

Top | Previous | Next | TOC | Tesla Patents

<u>Home | Newsletter | Tesla FAQ | Tesla Writings | Tesla Patents | Tesla On AC | Glossary | Links</u> <u>Bookstore | Contact Us | Search | Reference Section | Wholesale Distribution | Tesla Books | Site Map</u>

Energy Star High efficiency Heating & Cooling, Save money with a new system! Ads by Google

compressed air flow meter We offer you efficient solutions to reduce compressed air costs.

Advertise on this site

Twenty First Century Books Post Office Box 2001 Breckenridge, CO 80424-2001

© 1998-2006 Twenty First Century Books All Rights Reserved